Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(4): 4324-4338, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38313493

ABSTRACT

Green synthesis of silver nanoparticles (AgNPs) using a plant extract has attracted significant attention in recent years. It is found as an alternative for other physicochemical approaches because of its simplicity, low cost, and eco-friendly rapid steps. In the present study, Ophiorrhiza mungos (Om)-mediated AgNPs have been shown to be effective bioadsorbents for methylene blue (MB) dye removal (88.1 ± 1.74%) just after 1 h at room temperature in the dark from an aqueous medium for the first time. Langmuir and Freundlich isotherms fit the experimental results having the correlation coefficient constants R2 = 0.9956 and R2 = 0.9838, respectively. From the Langmuir fittings, the maximum adsorption capacity and adsorption intensity were found to be 80.451 mg/g and 0.041, respectively, indicating the excellent performance and spontaneity of the process. Taking both models under consideration, interestingly, our findings indicated a fairly cooperative multilayer adsorption that might have been governed by chemisorption and physisorption, whereas the adsorption kinetics followed the pseudo-second-order kinetics mechanism. The positive and low values of enthalpy (ΔH0 = 4.91 kJ/mol) confirmed that adsorption is endothermic and physical in nature; however, the negative free energy and positive entropy value (ΔS0 = 53.69 J/mol K) suggested that the adsorption is spontaneous. The biosynthesized adsorbent was successfully reused up to the fifth cycle. A proposed reaction mechanism for the adsorption process of MB dye onto Om-AgNPs is suggested. The present study may offer a novel finding such as an effective and sustainable approach for the removal of MB dye from water using biosynthesized Om-AgNPs as reusable adsorbents at a comparatively faster rate at a low dose for industrial applications.

2.
Biol Trace Elem Res ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38117384

ABSTRACT

In Bangladesh, body soaps are very popular among consumers due to their flavors and low alkali content. The current study assesses the contamination of several trace metals (TMs) such as iron (Fe), copper (Cu), zinc (Zn), chromium (Cr), manganese (Mn), nickel (Ni), cadmium (Cd), and lead (Pb) in some of the body soaps most commonly used in Bangladesh. The concentrations of Fe, Cu, Zn, Cr, and Mn were found within the acceptable limits stipulated by the World Health Organization (WHO); however, in contrast, the concentrations of Ni, Cd, and Pb remained below the detection limit. Notably, the concentration of Cr in two soap samples (S-2, S-3) out of twenty-one soap samples exceeded the permissible limit stipulated by the WHO. Health risks associated with the TM intake via dermal routes were evaluated in terms of chronic daily intake (CDI) and hazard quotient (HQ). The results indicated that no non-carcinogenic risks (NCR) are likely to occur owing to the use of those body soaps. The carcinogenic risk (CR) estimated for Cr revealed no possibility of probable carcinogenic diseases. Though the NCR and CR are unlikely to occur resulting from the long-term uses of these soaps, the present study provides baseline information on the possible contaminations of TMs in the beauty soaps that do not seem to have been reported so far in Bangladesh. In light of the above information, it can be concluded that the presence of TMs in the body soaps could be a warning for people in general thereby suggesting continuous monitoring.

3.
Heliyon ; 9(5): e16072, 2023 May.
Article in English | MEDLINE | ID: mdl-37215826

ABSTRACT

In this work, the aqueous leaf extracts of three Ophiorrhiza genus species, namely Ophiorrhiza mungos (Om), Ophiorrhiza harrisiana (Oh) and Ophiorrhiza rugosa (Or), have been used as the reducing and capping agents to control the size of AgNPs, Om-AgNPs, Oh-AgNPs and Or-AgNPs, respectively and found to be an effective antimicrobial agent against a wide range of bacteria and fungi. The biosynthesized AgNPs were studied by UV-Visible spectrophotometer, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM) and Fourier transform infrared spectrometer (FTIR). The average particle sizes of Om-AgNPs, Oh-AgNPs and Or-AgNPs were measured as 17 nm, 22 nm and 26 nm, respectively, and observed to be spherical and face-centered cubic crystals. The antibacterial test of synthesized AgNPs was performed against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Vibrio cholerae where the maximum antibacterial activity was observed by reducing the nano-size and increasing the silver content of AgNPs. The antifungal effect of these three types of AgNPs on Penicillium notatum and Aspergillus niger was also evaluated and their growth with AgNPs concentrations of 450 µg/mL was inhibited up to 80-90% and 55-70%, respectively. The size-control synthesis of AgNPs using the Ophiorrhiza genus species is presented here for the first time where the synthesized AgNPs showed higher stability and antimicrobial activities. Therefore, this study might lead to synthesize AgNPs with different morphologies using plant extracts of the same genus but from different species and provide strong encouragement for future applications in treating infectious diseases.

4.
Environ Pollut ; 315: 120452, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36272605

ABSTRACT

Metal/loid pollution from shipwrecking activities has drawn significant concern due to their persistent threat to the marine ecosystem and human health. We investigated the spatiotemporal distribution, pollution characteristics, risks, sources, and potential impact of metal/loids in the sediments and seafood in the Bay of Bengal at nearby open beaching shipwrecking yards in Bangladesh. We collected 78 sediments and 208 seafood samples from the exposed and control sites from 2018 to 2020 during the dry and wet seasons. The concentrations of 16 elements, including cadmium, arsenic, lead, chromium, manganese, copper, zinc, iron, tin, antimony, nickel, cobalt, molybdenum, vanadium, selenium, and thallium were measured using validated inductively coupled plasma-mass spectrometry (ICP-MS) methods. Based on the pollution indices (enrichment factor, geoaccumulation index, pollution index, and pollution load index), lead, arsenic, cadmium, selenium, copper, zinc, and tin from the dry season showed higher contaminations compared to the wet and their concentrations were increased from 2018 to 2020 with seasonal fluctuations. Sediment cadmium and arsenic posed relatively higher and moderate ecological risks. Health risk analysis indicated that lead, cadmium, and inorganic arsenic (estimated) in seafood species pose a possible health threat to the general population. Further, there were possible ecological and health risks for the metal/loids in combination based on the ecological risk index in sediment and the hazard index in seafood, respectively. Source apportionment suggested that anthropogenic activities through uncontrolled shipwrecking operations over the last four decades were the largest polluting dominator, contributing 55-77% of the metal/loid concentrations. Therefore, the data may inform mitigation strategies for emission control at the shipwrecking yards to protect marine ecosystems and their local population.


Subject(s)
Arsenic , Metals, Heavy , Selenium , Tin , Water Pollutants, Chemical , Humans , Arsenic/analysis , Bays , Cadmium/analysis , Copper/analysis , Ecosystem , Environmental Monitoring , Geologic Sediments/chemistry , Metals, Heavy/analysis , Seafood/analysis , Selenium/analysis , Tin/analysis , Water Pollutants, Chemical/analysis , Zinc/analysis
5.
Nutr Health ; 28(4): 771-782, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36066026

ABSTRACT

Background: It was assumed that dietary habits might influence the status of COVID-19 patients. Aim: We aimed at the identification of association of dietary habits with the COVID-19 severity and hospitalization. Methods: It was a retrospective cross-sectional study (n = 1025). We used bivariate and multivariate analyses to correlate the association between self-reported dietary patterns and COVID-19 severity and hospitalization. Results: Dietary habits (black tea, milked tea, pickles, black caraway seeds, honey, fish, fruits, vegetables, garlic, onion and turmeric) were identified with lower risk of COVID-19 severity and hospitalization. Interestingly, the consumption frequency (one-, two- or three-times/day) of rice - the staple food in Bangladesh - was not associated with COVID-19 severity and hospitalization for comorbid patients. In contrast, a moderate rice-eating habit (two times/day) was strongly associated with the lower risk of severity and hospitalization for non-comorbid patients. However, for both comorbid and non-comorbid patients, consumption of black tea, milked tea, pickles and honey were associated with a lower likelihood of severity and hospitalization. Overall, a high consumption (three-times/day) of fish, fruits and vegetables, a moderate consumption of garlic, onion and turmeric spices and a daily intake of black/milked tea, and honey were associated with reduced risk of COVID-19 severity and hospitalization. Conclusions: To reduce the severity of COVID-19, a habitual practice of intaking black tea, milked tea, black caraway seeds and honey along with dietary habit (rice, fish and vegetables) and with a moderate consumption of ginger, garlic, onion, mixed aromatic spices (cinnamon + cardamom + cloves) and turmeric might be suggested.


Subject(s)
COVID-19 , Garlic , Animals , Humans , Cross-Sectional Studies , COVID-19/epidemiology , Retrospective Studies , Bangladesh/epidemiology , Vegetables , Feeding Behavior , Tea , Antioxidants , Hospitalization
6.
Int J Health Sci (Qassim) ; 16(4): 30-45, 2022.
Article in English | MEDLINE | ID: mdl-35949693

ABSTRACT

Objectives: We aimed at the identification of the association of comorbidities with the COVID-19 severity and hospitalization. Methods: It is a retrospective cross-sectional study to investigate the variation in age, sex, dwelling, comorbidities, and medication with the COVID-19 severity and hospitalization by enrolling 1025 recovered individuals while comparing their time of recovery with or without comorbidities. Results: COVID-19 patients mostly suffered from fever. The predominant underlying medical conditions in them were hypertension (HTN) followed by diabetes mellitus (DM). Patients with cardiovascular disease (CVD) (54.3%) and hepatic disorders (HD) (43.6%) experienced higher severity. The risk of symptomatic cases was higher in aged (odds ratio, OR = 1.04, 95% CI = 1.02-1.06) and comorbid (OR = 1.87, 95% CI = 1.34-2.60) patients. T-test confirmed the differences between the comorbid and non-comorbid patients' recovery duration. The presence of multiple comorbidities increased the time of recovery (15-27 days) and hospitalization (20-40%). Increased symptomatic cases were found for patients having DM+HTN whereas CVD+Asthma patients were found with higher percentage of severity. Besides, DM+CKD (chronic kidney disease) was associated with higher hospitalization rate. Higher odds of severity were found for DM+CVD (OR = 4.42, 95% CI = 1.81-10.78) patients. Hospitalization risk was also increased for them (OR = 5.14, 95% CI = 2.02-13.07). Moreover, if they had HTN along with DM+CVD, they were found with even higher odds (OR = 6.82, 95% CI = 2.37-19.58) for hospitalization. Conclusion: Our study indicates that people who are aged, females, living in urban area and have comorbid conditions are at a higher risk for developing COVID-19 severity. Clinicians and health management authorities should prioritize these high-risk groups to reduce mortality attributed to the disease.

7.
Front Med (Lausanne) ; 7: 444, 2020.
Article in English | MEDLINE | ID: mdl-32850918

ABSTRACT

COVID-19, a disease induced by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2), has been the cause of a worldwide pandemic. Though extensive research works have been reported in recent days on the development of effective therapeutics against this global health crisis, there is still no approved therapy against SARS-CoV-2. In the present study, plant-synthesized secondary metabolites (PSMs) have been prioritized to make a review focusing on the efficacy of plant-originated therapeutics for the treatment of COVID-19. Plant metabolites are a source of countless medicinal compounds, while the diversity of multidimensional chemical structures has made them superior to treat serious diseases. Some have already been reported as promising alternative medicines and lead compounds for drug repurposing and discovery. The versatility of secondary metabolites may provide novel antibiotics to tackle MDR (Multi-Drug Resistant) microbes too. This review attempted to find out plant metabolites that have the therapeutic potential to treat a wide range of viral pathogens. The study includes the search of remedies belonging to plant families, susceptible viral candidates, antiviral assays, and the mode of therapeutic action; this attempt resulted in the collection of an enormous number of natural therapeutics that might be suggested for the treatment of COVID-19. About 219 plants from 83 families were found to have antiviral activity. Among them, 149 plants from 71 families were screened for the identification of the major plant secondary metabolites (PSMs) that might be effective for this pandemic. Our investigation revealed that the proposed plant metabolites can serve as potential anti- SARS-CoV-2 lead molecules for further optimization and drug development processes to combat COVID-19 and future pandemics caused by viruses. This review will stimulate further analysis by the scientific community and boost antiviral plant-based research followed by novel drug designing.

SELECTION OF CITATIONS
SEARCH DETAIL
...